Global Convergence of Augmented Lagrangian Methods Applied to Optimization Problems with Degenerate Constraints, Including Problems with Complementarity Constraints
نویسندگان
چکیده
We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error bound condition for the feasible set (which is weaker than constraint qualifications), assuming that the iterates have some modest features of approximate local minimizers of the augmented Lagrangian. For MPCC, we first argue that even weak forms of general constraint qualifications that are suitable for convergence of the augmented Lagrangian methods, such as the recently proposed relaxed positive linear dependence condition, should not be expected to hold and thus special analysis is needed. We next obtain a rather complete picture, showing that under the usual in this context MPCC-linear independence constraint qualification accumulation points of the iterates are guaranteed to be C-stationary for MPCC (better than weakly stationary), but in general need not be M-stationary (hence, neither strongly stationary). However, strong stationarity is guaranteed if the generated dual sequence is bounded, which we show to be the typical numerical behaviour even though the multiplier set itself is unbounded. Experiments with the ALGENCAN augmented Lagrangian solver on the MacMPEC and DEGEN collections are reported, with comparisons to the SNOPT and filterSQP implementations of the SQP method, to the MINOS implementation of the linearly constrained Lagrangian method, and to the interior-point solvers IPOPT and KNITRO.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملLocal Convergence Properties of
We consider the local convergence properties of the class of augmented Lagrangian methods for solving nonlinear programming problems whose global convergence properties are analyzed by Conn et al. (1993a). In these methods, linear constraints are treated separately from more general constraints. These latter constraints are combined with the objective function in an augmented Lagrangian while t...
متن کاملConvergence Properties of an Augmentedlagrangian Algorithm for Optimization with Acombination
We consider the global and local convergence properties of a class of augmented La-grangian methods for solving nonlinear programming problems. In these methods, linear and more general constraints are handled in diierent ways. The general constraints are combined with the objective function in an augmented Lagrangian. The iteration consists of solving a sequence of sub-problems; in each subpro...
متن کاملConvergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints
We consider the global and local convergence properties of a class of augmented Lagrangian methods for solving nonlinear programming problems. In these methods, linear and more general constraints are handled in different ways. The general constraints are combined with the objective function in an augmented Lagrangian. The iteration consists of solving a sequence of subproblems; in each subprob...
متن کاملRAL 95-009 Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints
ABSTRACT We consider the global and local convergence properties of a class of augmented Lagrangian methods for solving nonlinear programming problems. In these methods, linear and more general constraints are handled in different ways. The general constraints are combined with the objective function in an augmented Lagrangian. The iteration consists of solving a sequence of subproblems; in eac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 22 شماره
صفحات -
تاریخ انتشار 2012